Fluid Simulation

From an Eulerian Viewpoint

Andy Li

The University of British Columbia

Canadian Undergraduate Mathematics Conference, 2024

Andy Li (UBC) Fluid Simulation

@ Background
© Navier-Stokes
© Represention
@ Density

e Velocity

Andy Li (UBC) Fluid Simulation

Vector Calculus Background

e Gradient : Vf(x,y) = (%v%}f/>
e Divergence: V-0 =V - (u,v) = % + %

oCurI:VxJ:Vx(u,v)—@_@

Ox oy
) 1 -V -Vf = o°f Pf
Laplauan : . = 52 + 2

Andy Li (UBC) Fluid Simulation

The Navier-Stokes Equations

Lets Introduce 2 PDEs that govern the motion of in-compressible Newtonian fluids.

Navier-Stokes Equations

The Navier-Stokes equations describe the motion of viscous fluid substances. They
are a set of nonlinear partial differential equations given by:

V-u=0 (1)

du
pgr =-Vp+ pNV2u + pF, (2)

v

Andy Li (UBC) Fluid Simulation 2024 4/19

The Imcompressibility Condition

A fluid is incompressible if its density remains constant over time.

Momentum Equation

The Incompressibility Condition from the Navier-Stokes equations is given by:

V.-u=0,

where u is the velocity field.

What does this mean?

Andy Li (UBC) Fluid Simulation 2024 5/19

The Momentum Equation

Recall Newton's 2nd where ma = > F. A fluid’s pressure, viscosity, and external forces
dictates its movement.

Momentum Equation

The momentum equation of the Navier-Stokes equations is given by:

d
pd—: = —Vp+ uV2u + pF,

where u is the velocity field.

Lets break down each term qualitatively.

Andy Li (UBC) Fluid Simulation 2024 6/19

Lagrangian vs Eulerian Viewpoints

When we think about a continuum (like a fluid or a deformable solid) moving, there are two
approaches to tracking this motion. Illustrated below are the two.

Lagrangian Viewpoint Eulerian Viewpoint
[[]
° ‘e L
° °
[

Andy Li (UBC) Fluid Simulation

y

(i, j+1)

(’ - 17])

(i,J)

(i+1,))

(17./ - 1)

For each grid cell (7, /) we need to keep
track of density and velocity.

Both properties exhibit diffusion and
advection.

Our grid wraps around itself, so we have
periodic boundary conditions.

Andy Li (UBC)

Fluid Simulation

Density Solver: An Unstable Approach to Diffusion

Let d(x,y) be the density of the square at (x, y).

o Let u(x,y) = d(X+1’Y)+d(x_1’Y)jd(x’y_1)+d(x’y+l), the average densities of the 4 adjacent
squares.
o Let [. represent the value at our current time, and [, to be the value after 1 time step.

Let « = AtnmD, a constant from our time step, grid size, and diffusion coefficient.

Andy Li (UBC) Fluid Simulation

Density Solver: An Unstable Approach to Diffusion

o Let d(x,y) be the density of the square at (x,y).
) _ d(x+1,y)+d(x—1,y)+d(x,y—1)+d(x,y+1)
= z

o Let u(x,y , the average densities of the 4 adjacent

squares.
o Let [. represent the value at our current time, and [, to be the value after 1 time step.

o Let @« = AtnmD, a constant from our time step, grid size, and diffusion coefficient.

A simple algorithm looks like this:

Unstable Diffusion Eq.

dn(X,}/) = dc(X7 Y)+a(MC(X>y)_dC(X7y))

Andy Li (UBC) Fluid Simulation

Density Solver: An Unstable Approach to Diffusion

o Let d(x,y) be the density of the square at (x,y).
)= d(X+1’y)+d(x_1’Y)jd(x’y_1)+d(x’y+l), the average densities of the 4 adjacent

o Let u(x,y
squares.
o Let [. represent the value at our current time, and [, to be the value after 1 time step.

o Let @« = AtnmD, a constant from our time step, grid size, and diffusion coefficient.

A simple algorithm looks like this:

dn(x,y)

Unstable Diffusion Eq.

dn(X,}/) = dc(X7 Y)+a(MC(X>y)_dC(X7y))

Andy Li (UBC) Fluid Simulation

Density Solver: A Stable Approach to Diffusion

Lets take different approach that results in a stable interpolation. We find the densities which
when diffused backward in time yield the densities we started with.

de = dp — OC(PJn - dn)7
de = dp(a+1) — aup,.

Andy Li (UBC) Fluid Simulation

Density Solver: A Stable Approach to Diffusion

Lets take different approach that results in a stable interpolation. We find the densities which
when diffused backward in time yield the densities we started with.

de = dp — OC(PJn - dn)7
de = dp(a+1) — aup,.

Rearrange this to get:

Stable Diffusion Eq.

d _detapg
T a+1

Andy Li (UBC) Fluid Simulation

Graph of Stable Diffusion Equation

2.8 1
2.6 |
Let d. = 2, e = 3. Notice that: S o4l
lim Diff(de, pc,) = pic
a— 00 22 |
2 :
0 1 2 3 4 5

Andy Li (UBC) Fluid Simulation

Density Solver: Iterative Methods

Recall:

Stable Diffusion Eq.

_ dc + apin
T a+1
Where 11, = dn(X+1,y)+dn(x—1,y)j:dn(x,y—1)+dn(x,y+1)_

dn

9

Andy Li (UBC) Fluid Simulation 2024 12/19

Density Solver: Iterative Methods

Recall:

Stable Diffusion Eq.

_ dc + apin
T a+1
Where 11, = dn(X+1,y)+dn(x—l,y)jdn(x,y—1)+dn(x,y+1)_

dn

9

Options to solve this linear system include:
@ Build a matrix, then use a matrix inversion routine.

@ simpler iterative technique like Jacobi or Gauss-Seidel Method.

Andy Li (UBC) Fluid Simulation 2024 12/19

Density Solver: Advection ptl.

How can we make the density follow a given velocity field?
@ Use an iterative technique.

@ Use a semi-Lagrangian viewpoint.

Andy Li (UBC) Fluid Simulation

Density Solver: Advection ptl.

How can we make the density follow a given velocity field?
@ Use an iterative technique.

@ Use a semi-Lagrangian viewpoint.

The sketch of our algorithm:
© Treat each grid cell center as a particle.
@ Trace backwards over a time step to find the particle p that end up at our current cell c.
© Let particle p be represented by its 4 closest cells.

@ Interpolate the density of p with these 4 cells and assign this to be our new density for c.

Andy Li (UBC) Fluid Simulation

Density Solver: Advection pt2.

We will use the following functions:
o floor(x)=|x]|
e fract(x) = x - floor(x)
e L(a,b,s)=a+s(b—a)

Andy Li (UBC) Fluid Simulation

Density Solver: Advection pt2.

We will use the following functions:
o floor(x)=|x]|
e fract(x) = x - floor(x)
e L(a,b,s)=a+s(b—a)

Consider grid cell ¢ = (x,y). Let the particle that ends up at ¢ after At be
p=(xy")=(x,y) — v(x,y)At.

Lets find our new density for c,

Andy Li (UBC) Fluid Simulation 2024 14 /19

Satisfying the Incompressibility Condition

Helmholtz Decomposition

Any sufficiently smooth, rapidly decaying vector field F defined on all of R3 can be
decomposed into a curl-free (irrotational) component and a divergence-free
(solenoidal) component. In our case:

u=-Vep+VxA

where:

@ ¢ is a scalar potential function.

@ A is a vector potential function.

Andy Li (UBC) Fluid Simulation 2024 15/19

Satisfying the Incompressibility Condition Cont'd.

We can find the scalar potential function ¢:

VX(X+1,_)/)_ VX(X_ 17}/) + Vy(X7Y‘|‘1) - Vy(Xa.y_ 1)

V'V(Xay): 5 5 :
o(x,y) = [SD(X+1,)/)+90(X—1,y)+go(x,i/+1)+go(x7y_1)]_V_V(XJ).
_ (pxt1ly) —ox—Ly) ol y+1) —elxy—1)
Vw_(2 ’ 5)

The curl of a gradient field = 0.

Andy Li (UBC) Fluid Simulation

This can be implemented in around 100 lines of readable C code.

Andy Li (UBC) Fluid Simulation

Results.

This can be implemented in around 100 lines of readable C code.

Andy Li (UBC) Fluid Simulation 2024 17 /19

References

[Bridson, R., & Miiller-Fischer, M. (2007).
Fluid Simulation: SIGGRAPH 2007 Course Notes.
University of British Columbia, AGEIA Inc., Vancouver, Canada and Zurich, Switzerland, August 10.

@ Stam, J., (2003).
Real-Time Fluid Dynamics for Games.
Alias — wavefront, Toronto, Canada, May 25.

Andy Li (UBC) Fluid Simulation

Questions?

Andy Li (UBC) Fluid Simulation 2024 19/19

	Background
	Navier–Stokes
	Represention
	Density
	Velocity

