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Vector Calculus Background
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The Navier-Stokes Equations

Lets Introduce 2 PDEs that govern the motion of in-compressible Newtonian fluids.

Navier-Stokes Equations

The Navier-Stokes equations describe the motion of viscous fluid substances. They
are a set of nonlinear partial differential equations given by:

V-u=0 (1)

du
pgr =-Vp+ pNV2u + pF, (2)

v
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The Imcompressibility Condition

A fluid is incompressible if its density remains constant over time.

Momentum Equation

The Incompressibility Condition from the Navier-Stokes equations is given by:

V.-u=0,

where u is the velocity field.

What does this mean?
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The Momentum Equation

Recall Newton's 2nd where ma = > F. A fluid’s pressure, viscosity, and external forces
dictates its movement.

Momentum Equation

The momentum equation of the Navier-Stokes equations is given by:

d
pd—: = —Vp+ uV2u + pF,

where u is the velocity field.

Lets break down each term qualitatively.
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Lagrangian vs Eulerian Viewpoints

When we think about a continuum (like a fluid or a deformable solid) moving, there are two
approaches to tracking this motion. Illustrated below are the two.

Lagrangian Viewpoint Eulerian Viewpoint
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For each grid cell (7, /) we need to keep
track of density and velocity.

Both properties exhibit diffusion and
advection.

Our grid wraps around itself, so we have
periodic boundary conditions.
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Density Solver: An Unstable Approach to Diffusion

Let d(x,y) be the density of the square at (x, y).

o Let u(x,y) = d(X+1’Y)+d(x_1’Y)jd(x’y_1)+d(x’y+l), the average densities of the 4 adjacent
squares.
o Let [. represent the value at our current time, and [, to be the value after 1 time step.

Let « = AtnmD, a constant from our time step, grid size, and diffusion coefficient.
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Density Solver: An Unstable Approach to Diffusion

o Let d(x,y) be the density of the square at (x,y).
) _ d(x+1,y)+d(x—1,y)+d(x,y—1)+d(x,y+1)
= z

o Let u(x,y , the average densities of the 4 adjacent

squares.
o Let [. represent the value at our current time, and [, to be the value after 1 time step.

o Let @« = AtnmD, a constant from our time step, grid size, and diffusion coefficient.

A simple algorithm looks like this:

Unstable Diffusion Eq.

dn(X,}/) = dc(X7 Y)+a(MC(X>y)_dC(X7y))
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Density Solver: An Unstable Approach to Diffusion

o Let d(x,y) be the density of the square at (x,y).
)= d(X+1’y)+d(x_1’Y)jd(x’y_1)+d(x’y+l), the average densities of the 4 adjacent

o Let u(x,y
squares.
o Let [. represent the value at our current time, and [, to be the value after 1 time step.

o Let @« = AtnmD, a constant from our time step, grid size, and diffusion coefficient.

A simple algorithm looks like this:

dn(x,y)

Unstable Diffusion Eq.

dn(X,}/) = dc(X7 Y)+a(MC(X>y)_dC(X7y))

Andy Li (UBC) Fluid Simulation



Density Solver: A Stable Approach to Diffusion

Lets take different approach that results in a stable interpolation. We find the densities which
when diffused backward in time yield the densities we started with.

de = dp — OC(PJn - dn)7
de = dp(a+1) — aup,.
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Density Solver: A Stable Approach to Diffusion

Lets take different approach that results in a stable interpolation. We find the densities which
when diffused backward in time yield the densities we started with.

de = dp — OC(PJn - dn)7
de = dp(a+1) — aup,.

Rearrange this to get:

Stable Diffusion Eq.

d _detapg
T a+1
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Graph of Stable Diffusion Equation
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Density Solver: Iterative Methods

Recall:

Stable Diffusion Eq.

_ dc + apin
T a+1
Where 11, = dn(X+1,y)+dn(x—1,y)j:dn(x,y—1)+dn(x,y+1)_

dn

9
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Density Solver: Iterative Methods

Recall:

Stable Diffusion Eq.

_ dc + apin
T a+1
Where 11, = dn(X+1,y)+dn(x—l,y)jdn(x,y—1)+dn(x,y+1)_

dn

9

Options to solve this linear system include:
@ Build a matrix, then use a matrix inversion routine.

@ simpler iterative technique like Jacobi or Gauss-Seidel Method.
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Density Solver: Advection ptl.

How can we make the density follow a given velocity field?
@ Use an iterative technique.

@ Use a semi-Lagrangian viewpoint.
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Density Solver: Advection ptl.

How can we make the density follow a given velocity field?
@ Use an iterative technique.

@ Use a semi-Lagrangian viewpoint.

The sketch of our algorithm:
© Treat each grid cell center as a particle.
@ Trace backwards over a time step to find the particle p that end up at our current cell c.
© Let particle p be represented by its 4 closest cells.

@ Interpolate the density of p with these 4 cells and assign this to be our new density for c.
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Density Solver: Advection pt2.

We will use the following functions:
o floor(x)=|x]|
e fract(x) = x - floor(x)
e L(a,b,s)=a+s(b—a)
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Density Solver: Advection pt2.

We will use the following functions:
o floor(x)=|x]|
e fract(x) = x - floor(x)
e L(a,b,s)=a+s(b—a)

Consider grid cell ¢ = (x,y). Let the particle that ends up at ¢ after At be
p=(xy")=(x,y) — v(x,y)At.

Lets find our new density for c,
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Satisfying the Incompressibility Condition

Helmholtz Decomposition

Any sufficiently smooth, rapidly decaying vector field F defined on all of R3 can be
decomposed into a curl-free (irrotational) component and a divergence-free
(solenoidal) component. In our case:

u=-Vep+VxA

where:

@ ¢ is a scalar potential function.

@ A is a vector potential function.
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Satisfying the Incompressibility Condition Cont'd.

We can find the scalar potential function ¢:

VX(X+1,_)/)_ VX(X_ 17}/) + Vy(X7Y‘|‘1) - Vy(Xa.y_ 1)

V'V(Xay): 5 5 :
o(x,y) = [SD(X+1,)/)+90(X—1,y)+go(x,i/+1)+go(x7y_1)]_V_V(XJ).
_ (pxt1ly) —ox—Ly) ol y+1) —elxy—1)
Vw_( 2 ’ 5 )

The curl of a gradient field = 0.
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This can be implemented in around 100 lines of readable C code.
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Results.

This can be implemented in around 100 lines of readable C code.
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Questions?
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